If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16v^2+40v-25=0
a = 16; b = 40; c = -25;
Δ = b2-4ac
Δ = 402-4·16·(-25)
Δ = 3200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3200}=\sqrt{1600*2}=\sqrt{1600}*\sqrt{2}=40\sqrt{2}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40\sqrt{2}}{2*16}=\frac{-40-40\sqrt{2}}{32} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40\sqrt{2}}{2*16}=\frac{-40+40\sqrt{2}}{32} $
| 3×4x=10 | | 20=3(p+4)+2 | | 1/2b+9=5 | | 14=-2(z+9)+-4 | | 2(w-7)-4=8 | | 2(g-4)-7=11 | | 18u-17u=14 | | |2x-1|=49 | | 18u-17u=4 | | 3x+-15=18 | | -9a+12a-3=-6 | | 31-17-k=9 | | 4p^2-7=25 | | 7+2x-12x=3x+1 | | A=3400t+600=21,000 | | 9j+12j+19j-1=13 | | -5x-8=-48 | | 100r2+7=8 | | |x|+7=27 | | 20=a+6-39 | | 3/4x-5=1/2x+8 | | 2/10=a+1/2 | | 6+5m+1=26 | | 5a-4a=2 | | -1+5(6b-5)=-116 | | 20=-5-t | | 180=-2x+8(-3x+3 | | x/4+4=-9 | | 120/x+50=90 | | 4(a-5)-5=11+2a | | -3(2x—3)=6x+9 | | -5n-9=4+2 |